Note: Please check your Spam or Junk folder, in case you didn't receive the email with verification code.
SYLLABUS
UNIT-1
Atomic Spectra and Models Inadequacy of Classical Physics : Brief Review of Black body Radiation, Photoelectric effect, Compton effect, dual nature of radiation, wave nature of particles. Atomic spectra, Line spectra of hydrogen atom, Ritz Rydberg combination principle. Alpha Particle Scattering, Rutherford Scattering Formula, Rutherford Model of atom and its limitations, Bohr’s model of H atom, explanation of atomic spectra, correction for finite mass of the nucleus, Bohr correspondence principle, limitations of Bohr model, discrete energy exchange by atom, Frank Hertz Expt. Sommerfeld’s Modification of Bohr’s Theory.
UNIT-2
Wave Particle Duality : de Broglie hypothesis, Experimental confirmation of matter wave, Davisson Germer Experiment, velocity of de Broglie wave, wave particle duality, Complementarity. Superposition of two waves, phase velocity and group velocity , wave packets ,Gaussian Wave Packet , spatial distribution of wave packet, Localization of wave packet in time. Time development of a wave Packet; Wave Particle Duality, Complementarity. Heisenberg Uncertainty Principle, Illustration of the Principle through thought Experiments of Gamma ray microscope and electron diffraction through a slit. Time independent and time dependent Schrodinger wave equation. Estimation of ground state energy of harmonic oscillator and hydrogen atom, non-existence of electron in the nucleus. Uncertainty and Complementarities.
UNIT-3
Nuclear Physics : Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers.
UNIT-4
Radioactivity : stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and Pauli’s prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus. Fission and fusionmass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions), Classification of Elementary Particles.
No Preview is available for this book
CategoriesArts and Science
Format PDF
TypeeBook